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SUMMARY

The enediyne antibiotic calicheamicin (CLM) g1
I is a

prominent antitumor agent that is targeted to DNA
by a novel aryltetrasaccharide comprised of an aro-
matic unit and four unusual carbohydrates. Herein
we report the heterologous expression and the bio-
chemical characterization of the two ‘‘internal’’ gly-
cosyltransferases CalG3 and CalG2 and the struc-
tural elucidation of an enediyne glycosyltransferase
(CalG3). In conjunction with the previous character-
ization of the ‘‘external’’ CLM GTs CalG1 and CalG4,
this study completes the functional assignment of all
four CLM GTs, extends the utility of enediyne GT-cat-
alyzed reaction reversibility, and presents conclusive
evidence of a sequential glycosylation pathway in
CLM biosynthesis. This work also reveals the com-
mon GT-B structural fold can now be extended to
include enediyne GTs.

INTRODUCTION

Calicheamicin (CLM) g1
I (Figure 1, 1) from Micromonospora echi-

nospora spp. calichensis is a prominent member of the enediyne

family because of its unprecedented molecular architecture, re-

markable mechanism of action, and clinical utility (Galm et al.,

2005; Thorson et al., 2000; Van Lanen and Shen, 2008). Structur-

ally, CLM is a member of the 10-membered enediynes, which all

share a signature bicyclo[7.3.1]enediyne core. Like all enediynes,

CLM-induced oxidative DNA strand scission is enabled by rapid

enediyne cycloaromatization to form a highly reactive diradical

species (Zein et al., 1989, 1988). This reactive intermediate is ex-

quisitely positioned by the CLM aryltetrasaccharide (Figure 1),

the critical DNA docking element of CLM (Kumar et al., 1997;

Walker et al., 1993). The incredible potency of CLM has also

been harnessed for clinical use by way of conjugation to tumor-

targeting antibodies, as exemplified by the g-CD33 antibody

conjugate (Mylotarg) approved by FDA in 2000 to treat acute

myelogenous leukemia (AML) (Sievers and Linenberger, 2001).

Similarly appended CLM-antibody conjugates to treat other can-
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cers are steadily progressing through clinical trials (Boghaert

et al., 2004; DiJoseph et al., 2005; Hamann et al., 2005).

Consistent with their many novel structural and pharmacolog-

ical features, enediyne biosynthetic pathways are also rich with

unique enzyme-catalyzed biotransformations. Early metabolic

labeling studies suggested the 9- and 10-membered enediynes

derive from distinct biosynthetic pathways (Hensens et al.,

1989; Lam et al., 1993; Tokiwa et al., 1992). In contrast, the recent

cloning and characterization of gene clusters encoding 9-mem-

bered enediynes, including C-1027 (Figure 1, 4; Liu et al., 2002),

neocarzinostatin (Figure 1, 5; Liu et al., 2005), and maduropeptin

(Figure 1, 6; Van Lanen et al., 2007), and 10-membered ene-

diynes, including CLM (Ahlert et al., 2002), esperamicin (Figure 1,

2; and J.S.T., unpublished data, AY267372), and dynemicin (Fig-

ure 1, 3; Gao and Thorson, 2008; Zazopoulos et al., 2003), re-

vealed a unified, divergent polyketide paradigm for enediyne

core biosynthesis (Ahlert et al., 2002; Liu et al., 2002; Zhang

et al., 2008). Some enediyne-producing organisms also rely on

a unique ‘‘self-sacrifice’’ resistance protein (as exemplified by

the CLM protein CalC) for enediyne self-resistance (Biggins

et al., 2003; Singh et al., 2006). Shen and coworkers were the first

to demonstrate the elegant application of pathway engineering to

produce chromoprotein enediyne analogs with drastically differ-

ing activities (Kennedy et al., 2007a, 2007b; Liu et al., 2002),

whereas sugar exchange and aglycon exchange reactions cata-

lyzed by the CLM glycosyltransferases (GTs) CalG1 and CalG4

recently enabled the production of more than 70 differentially gly-

cosylated CLM variants (Zhang et al., 2006b). Though this latter

study also provided in vitro biochemical characterization of

CalG1 and CalG4 as the CLM 3-O-methyl-rhamnosyltransferase

and aminopentosyltransferase, respectively (Zhang et al.,

2006b), the function of the remaining CLM glycosyltransferases

CalG2 and CalG3 remain unresolved. In addition, though the

structures for various natural product-associated glycosyltrans-

ferase have emerged in recent years (Bolam et al., 2007; Mittler

et al., 2007; Mulichak et al., 2001, 2003, 2004), enediyne GTs re-

main structurally uncharacterized (Van Lanen and Shen, 2008).

Herein we report the further study of the internal stages of CLM

glycosylation. Specifically, using a combination of GT reaction

reversibility and sugar nucleotide surrogates, CalG3 was verified

as the requisite calicheamicinone 4,6-dideoxy-4-hydroxylamino-

a-D-glucosyltransferase and demonstrated to accept a set of

10 alternative sugar nucleotide donors. The structural studies
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Figure 1. Representative Naturally Occurring Enediynes

Ten-membered enediynes calicheamcin g1
I (1), esperamicin (2), and dynemicin (3); and nine-membered chromoprotein enediynes C-1027 (4), neocarzinostatin

(5), and maduropeptin (6).
highlighted herein also revealed that enediyne GTs such as

CalG3 adopt a GT-B fold common to natural product GTs. This

structural study illuminated key catalytic residues and snapshots

of a dynamic loop anticipated to participate in NDP binding. The

application of a surrogate sugar nucleotide also enabled the

confirmation of CalG2 as the remaining internal GT—the 4-de-

oxy-thio-a-D-digitoxosyltransferase—as the first characterized

hydroxylamino glycosidic bond-forming GT. In conjunction with

our previous report (Zhang et al., 2006b), this study completes

the functional assignment of all four CLM GTs, extends the con-

cept of reversibility of enediyne GT-catalyzed reactions, and

highlights a crystal structure of an enediyne GT.

RESULTS

Overexpression and Purification of CalG3 and CalG2
Analysis of the CLM biosynthetic gene cluster from M. echino-

spora revealed four putative GT-encoding genes, calG1, calG2,

calG3, and calG4 (Ahlert et al., 2002), implicating a distinct GT

for each sugar of the CLM aryltetrasaccharide. Consistent with

this, in vitro biochemical characterization confirmed CalG1 and

CalG4 as the CLM 3-O-methyl-rhamnosyltransferase and ami-

nopentosyltransferase, respectively (Zhang et al., 2006b). Anal-

ysis of CalG3 revealed highest homology to characterized GTs,

which operate on aromatic acceptors such as the nogalamycin

SnogD (37% identity; Torkkell et al., 1997) and elloramycin

ElmGT (36% identity; Blanco et al., 2001), whereas CalG2

more closely resembled GTs, which act on carbohydrate ac-

ceptors such as the CLM CalG4 (50% identity; Zhang et al.,

2006b) and avermectin AveBI (42% identity; Wohlert et al.,

2001; Zhang et al., 2006a). Based on this simple analysis,
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CalG3 was proposed as the putative calicheamicinone 4,6-

dideoxy-4-hydroxylamino-a-D-glucosyltransferase and CalG2

postulated as the subsequent 4-deoxy-thio-a-D-digitoxosyl-

transferase (anticipated to form the signature CLM hydroxyla-

mino glycosidic bond). To complete the CLM GT annotation,

recombinant N-His10-CalG2 and N-His10-CalG3 fusion proteins

were overproduced in E. coli and subsequently purified by

nickel-affinity chromatography to >95% homogeneity (see Fig-

ure S1 available online) with overall yields of 10–15 mg/l culture.

Preparation of the Putative Acceptor CLM T0

The availability of an appropriate acceptor was critical to the

in vitro characterization of CalG2 and CalG3. To address this

issue, the truncated CLM analog CLM T0 (Figure 2A, 9) was pre-

pared with a slight modification of a literature procedure (Walker

et al., 1992). Specifically, CLM a3
I (Figure 2A, 7, and Figure 2B, i)

was refluxed in wet acetone with pyridine p-toluenesulfonate

and the reaction monitored via HPLC. After refluxing for 19 h,

a product clearly distinct from starting material, but with the

characteristic CLM core UV signature, was generated (Fig-

ure 2B, ii). The product was purified (Figure 2B, iii) and deter-

mined to have a mass of 625.1 [M + H] by APCI-MS analysis—40

daltons greater than expected product 9. Subsequent 1H NMR

analysis (Figure S2) revealed the new product to be 8

(Figure 2A), an isopropylidene adduct formed by the dehydration

of acetone in the presence of tosylate. Reasoning that the ad-

duct could be easily removed under mild acidic conditions, 8

was incubated with 0.2% TFA to provide 9 in 4 hr (Figure 2B, iv

and v). The identity of 9 was verified by high-resolution ESI-MS

([M + Na]+, m/z C24H28N2NaO9S3, calculated 607.0855, found

607.0866) and 1H NMR (Figure S3).
42–853, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 843
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Figure 2. Preparation of CLM T0 (9) from

CLM a3
I (7)

(A) Schematic of the strategy: (a) refluxing in

acetone, 65�C, 19 hr; (b) incubated in 0.2% TFA,

RT, 4 hr.

(B) HPLC analyses of the preparation: (i) starting

material 7; (ii) refluxed for 19 hr; (iii) purified 8

from the reaction mixture of (ii); (iv) 8 incubated

with 0.2% TFA at RT for 2 hr; and (iv) 8 incubated

with 0.2% TFA at RT for 4 hr.
Reversibility of CalG3-Catalyzed Reaction
Following recently established protocols for GT reversibility

(Minami et al., 2005; Zhang et al., 2006a, 2006b, 2007), CalG3

and CalG2 were first investigated for their ability to catalyze

the excision of 4,6-dideoxy-4-hydroxylamino-a-D-glucosyl moi-

ety from CLM T0 (9) (Figure 3A). No reaction was observed with 9

(50 mM) and CalG2 (7.5 mM) in the presence of 2 mM NDP (ADP,

CDP, GDP, UDP, or TDP) in Tris-HCl (10 mM [pH 7.6]). In con-

trast, the incubation of 9 (50 mM) with CalG3 (7.5 mM) in the pres-

ence of various NDPs (2 mM) led to new product after 2 hr at

30�C (Figure 3B, i–v). This transformation was determined to

be both CalG3 and NDP dependent (Figure 3B, vi), and the

new product was subsequently identified as the deglycosylated

calicheamicinone (Figure 3A, 10) by LC-MS (calculated 423,

found 446.0 [M + Na]+ and 422 [M � H]�) (Table S1). Unlike prior

reports on the reversibility of GT-catalyzed reactions that indi-

cated such transformations to be NDP specific, CalG3 reversibil-

ity was observed with ADP (conversion rate of 40%; Figure 3B, i),

GDP (23%; Figure 3B, ii), UDP (24%; Figure 3B, iii), TDP (trace;

Figure 3B, iv), and even CDP (trace; Figure 3B, v). The apparent

reversibility of this reaction was also enhanced at lower pH

(Figure S4A). Cumulatively, these studies highlight the clear re-

versibility of the CalG3-catalyzed reaction and are consistent

with CalG3 as the requisite 4,6-dideoxy-4-hydroxylamino-a-D-

glucosyltransferase involved in 1 biosynthesis.

CalG3-Catalyzed Sugar Exchange
Given the lack of calicheamicinone availability (Figure 3A, 10),

the CalG3 sugar nucleotide specificity was alternatively probed

with 9 as an acceptor for putative GT-catalyzed ‘‘sugar ex-

change’’ reactions. In a GT-catalyzed sugar exchange reaction,

first observed in the context of CalG1 catalysis (Zhang et al.,

2006b), the native sugar of a natural glycoside can be substituted

in situ by unnatural sugars supplied as NDP sugar donors. Five

commercially available NDP-glucoses, including ADP-, CDP-,

GDP-, UDP-, and TDP-Glc were examined in the CalG3 sugar

exchange reaction with 9. Remarkably, all five NDP-glucoses

were established as CalG3 donor substrates, albeit with varying

sugar exchange efficiencies in the end point assay (50 mM 9, 2

mM NDP-Glc, 7.5 mM CalG3, 30�C overnight). TDP glucose ex-

hibited the highest conversion rate of 9–9a (49.3%), followed

by UDP-Glc (36.0%), CDP-Glc (25.3%), GDP-Glc (10.6%), and

ADP-Glc (9.8%). In contrast to the influence of pH on reaction
844 Chemistry & Biology 15, 842–853, August 25, 2008 ª2008 Elsev
reversibility, the CalG3-catalyzed sugar exchange reaction was

enhanced at higher pH (Figures S4B and S4C).

The sugar exchange promiscuity of CalG3 was subsequently

probed directly with 9 and a small library of 22 TDP sugars (Fig-

ure S5) comprised of 20 TDP-D sugars (including commercially

available TDP-a-D-glucose and unnatural sugar nucleotides

generated via chemoenzymatic synthesis with functionality var-

iations such as deoxy, amino, and azido at the sugar C2, C3,

C4, C5, or C6 positions) and two TDP-L sugars (TDP-b-L-rham-

nose and TDP-a-L-rhamnose). From this substrate specificity

analysis, 10 sugar nucleotides were identified as CalG3 sub-

strates (Figures 3A and 3C, i–x) to ultimately provide 10 unique

CLM variants 9a–j (Figure 3A and Table S1) with sugar

exchange conversions ranging from 15% to 70% (Figure 3C).

Cumulatively, these studies revealed CalG3 to be a relatively

promiscuous GT and further highlighted GT-catalyzed

sugar exchange as an expeditious method for natural product

diversification.

CalG3 Structure
The structure of CalG3 was determined by single wavelength

anomalous diffraction using a 2.8 Å data set collected from Se-

Met-labeled crystals (from I222 crystal form) and refined against

this data set as well as a native data set to a resolution of 1.9 Å

(from P21 crystal form). Data collection, phasing, and refinement

statistics are summarized in Table 1. Consistent with gel filtration,

asymmetric units of both crystal forms revealed two molecules of

CalG3 arranged into dimers with C2 symmetry (Figure 4A). Anal-

ysis of the binding interface of these dimers by the PISA server

(Krissinel and Henrick, 2007) revealed the total buried surface

area for the complex of 3300–3600 Å2. The dimers of both crystal

forms align with an all-atom rmsd of 0.76 Å, whereas all observed

monomer conformers from both crystal forms align with rmsd

�0.48 Å. These results confirm that CalG3 forms dimers with

a closely similar quaternary arrangement in both crystal forms,

and this form of protein thus may be relevant in vivo. A detailed

backbone comparison of the CalG3 molecules found in the two

crystal forms revealed that several secondary structure elements

undergo slight shifts—these include surface-exposed segments

containing residues 54–76, 205–212, and 219–226. In addition,

a tetraglycine loop spanning residues 285–288 (Figure 4B, pink)

undergoes a conformational change.

The structure of the CalG3 monomer revealed that this pro-

tein consists of two closely opposed globular domains, the
ier Ltd All rights reserved
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Figure 3. CalG3-Catalyzed Reverse Reaction and Sugar Exchange Reaction

(A) Schematic of the CalG3-catalyzed formation of 10 from 9 via reverse catalysis and the production of 10 unique CLM variants 9a–j via sugar exchange.

(B) HPLC analyses of CalG3-catalyzed reverse reactions. In these reactions, 50 mM 9 was incubated with 7.5 mM CalG3 for 2 hr at 30�C in the presence of (i) 2 mM

ADP; (ii) 2 mM GDP; (iii) 2 mM UDP; (iv) 2 mM CDP; (v) 2 mM TDP; and (vi) no NDP. Percent conversions were indicated in the parentheses.

(C) The production of 9a–j via CalG3-catalyzed sugar exchange. A total of 50 mM 9 was incubated with 7.5 mM CalG3 at 30�C overnight in the presence of various

TDP sugars (300 mM; Figure S4). Percent conversions were indicated in the parentheses.
N-terminal domain (residues 1–193; Figure 4B, cyan) and the

C–terminal domain (residues 209–360; Figure 4B, khaki) con-

nected with a linker (residues 194–208; Figure 4B, yellow) and

stabilized by interaction of the C-terminal helix (residues 362–

375; Figure 4B, green) and the N-terminal domain. Both the

N- and C-terminal domain adopt a fold with Rossmann topology

and a three-layer a-b-a sandwich architecture that shows
Chemistry & Biology 15, 8
homology to glycogen phoshorylase B. The structurally homolo-

gous cores of these domains can be aligned with an rmsd of

3.1 Å for 103 residues. However, the domains show dramatic

variations in size and conformation of several loop regions as

well as topology of their C-termini. Full-length CalG3 belongs

to the GT-B clan of GTs and adopts a UDP-glycosyltransfer-

ase/glycogen phosphorylase fold found in many GTs. Based
42–853, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 845
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Table 1. Crystal Parameters, X-Ray Data Collection, Phasing, and Refinement Statistics

SeMet Native

Crystal parameters

Space group I222 P21

Unit-cell parameters (Å, �) a = 106.7, b = 119.3, c = 156.0 a = 57.4, b = 97.7, c = 63.0 b = 90.6

Data collection statistics

Wavelength (Å) 0.97918 0.97918

Energy (eV) 12,662 12,662

Resolution range (Å) 26.75–2.80 (2.90–2.80) 38.76–1.68 (1.74–1.68)

No. of reflections (measured/unique)a 180,890/24,883 482,455/68,513

Completeness (%) 99.2 (94.9) 86.3 (43.6)

Rmerge
b 0.121 (0.426) 0.051 (0.496)

Redundancy 7.3 (6.3) 7.0 (3.9)

Mean I/sigma(I) 9.8 (4.0) 25.1 (2.4)

Phasing statisticsc

Mean FOM (centric/acentric) 0.344/0.090

Phasing power (isomorphous/anomalous) 0.0/1.17

Cullis R-factor (isomorphous/anomalous) 0.0/0.79

Refinement and model statistics

Resolution range 26.75–2.79 (2.86–2.79) 38.76–1.90 (1.95–1.90)d

No. of reflections (work/test) 23,613/1,270 50,954/2,745

Rcryst
e 0.187 (0.311) 0.160 (0.186)

Rfree
f 0.243 (0.378) 0.212 (0.275)

Rmsd bonds (Å) 0.011 0.014

Rmsd angles (�) 1.336 1.417

ESU from Rfree (Å)g 0.342 0.146

B factor, Wilson plot (Å2) 50.3 24.3

B factor, monomer A/B/waters (Å2)h 31.4/33.0/23.3 31.4/30.2/36.4

No. of protein molecules/all atoms 2/5,783 2/6,378

No. of waters 45 579

No. of auxiliary molecules 2 MOPS 1 PEG

Ramachandran plot by MolProbity (%)

Favored regions 97.5 98.3

Additional allowed regions 2.5 1.6

Outliers 0.0 0.1

PBD code 3DOQ 3DOR
a Values in parentheses are for the highest-resolution shell.
b Rmerge =

P
h

P
ijIi(h)� < I(h) > j/

P
h

P
iIi(h), where Ii(h) is the intensity of an individual measurement of the reflection and < I(h) > is the mean intensity of

the reflection.
c Resolution range for phasing in SHARP was (26.66–3.2) Å.
d Resolution range for refinement was cut (38.76–1.90) Å due to low completeness and signal in the remaining resolution shells.
e Rcryst =

P
hjjFobsj�jFcalcjj/

P
hjFobsj, where Fobs and Fcalc are the observed and calculated structure-factor amplitudes, respectively.

f Rfree was calculated as Rcryst using �5.0% of the randomly selected unique reflections that were omitted from structure refinement.
g Estimated standard uncertainty based on Rfree.
h B-factors from the model refined without TLS.
on the VAST server (Madej et al., 1995), the closest overall struc-

tural homologs of CalG3 include Streptomyces fradiae TDP-D-

olivose-transferase UrdGT2 (which structurally aligns with

CalG3 for 369 residues with 24% identity and rmsd of 3.1 Å,

PDB ID 2p6p) (Mittler et al., 2007) and Amycolatopsis orientalis

TDP-epi-vancosaminyltransferase GtfA (363 residues with 20%

identity and rmsd of 4.0 Å, PDB ID 1pnv, 1pn3, 1rrv; Mulichak

et al., 2003).
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In Vitro Characterization of CalG2
Given the lack of availability of the natural substrate NDP-4-

deoxy-4-thio-a-D-digitoxose, the biochemical function of CalG2

was examined with a small library of 22 surrogate TDP sugar

substrates (Figure S5). Of this set, only one, TDP-4,6-dideoxy-

a-D-glucose (Figure 5, 12), led to the CalG2-catalyzed transfor-

mation of 9 to a new product with a mass (calculated 714, found

737 [M + Na]+) (Table S1) consistent with 13 (Figure 5, i). Notably,
ier Ltd All rights reserved
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Figure 4. Structure of CalG3

(A) A ribbon diagram of the CalG3 dimer with

monomers color-coded in red and cyan.

(B) The CalG3 monomer is formed by closely

opposed N-terminal (cyan) and the C-terminal do-

mains (khaki). These distinct domains are con-

nected by a linker (yellow) and their interaction is

stabilized by the C-terminal helix (green). The

blue arrow indicates the putative catalytic loop;

the magenta arrow points to a pyrophosphate-

binding tetraglycine loop spanning residues

285–288. An ordered portion of a polyethylene

glycol molecule (brown) has been found in the cav-

ity formed by the N-domain. The inset highlights

Ca-trace of CalG3 (cyan, yellow, khaki) in the ac-

tive site with putative catalytic diad residues H11

and E115 highlighted. The gray Ca-trace is that

of a docked model, which incorporates experi-

mentally observed conformational changes in

the pyrophosphate-binding loop (magenta) and

modeled changes of the catalytic loop (blue, black

arrow).

(C) Manually docked model of the CalG3 with CLM

T0 (carbon, cyan; oxygen, red; sulfur, yellow; nitro-

gen, blue) and a dinucleotide TDP (carbon, yellow;

oxygen, red; nitrogen, blue; phosphorus, orange)

in the active site.
this new product was clearly distinct from the CalG3-catalyzed

sugar exchange product 9e (Figure 5, iii), derived from the

same set of starting materials 9 and 12 (Figure 5), and its produc-

tion was enzyme dependent (Figure 5, ii). The incubation of 8 with

12 and CalG2 under identical conditions led to no change, con-

sistent with the 8 isopropylidene as masking the CalG2 acceptor

nucleophile. Cumulatively, these in vitro studies confirmed that

CalG2 was capable of adding a sugar to 9, consistent with

CalG2 as the requisite CLM 4-deoxy-4-thio-a-D-digitoxosyl-

transferase.

DISCUSSION

CLM GTs and CLM Biosynthesis
Calicheamicin (1) has two distinct structural regions: the ene-

diyne aglycon, or warhead, which consists of a highly functional-

ized bicyclo[7.3.1.]tridecadiyne core structure with an allylic

trisulfide serving as the initial trigger for warhead cycloaromati-

zation, and the aryltetrasaccharide, which is composed of

a set of unusual carbohydrate and aromatic units and docks

the metabolite specifically into the minor groove of DNA (Kumar

et al., 1997; Walker et al., 1994). Two possible scenarios for the

final stages of CLM biosynthesis have been put forth: sequential

GT-catalyzed glycosylation of the calicheamicinone core (as

highlighted in Figure 6) or coupling an intact aryltetrasaccharide

unit to the calicheamicinone core (Rothstein and Love, 1991;

Thorson et al., 1999). The first of these was based on the conven-

tional routes to secondary metabolite glycosylation; the second

was derived from the structural similarities between the CLM ar-

yltetrasaccharide and the orthosomycins avilamycin or evernimi-

cin (Hosted et al., 2001; Weitnauer et al., 2001). Consistent with

either putative NDP-sugar or aryltetrasaccharide intermediates,

random chemical mutagenesis of the CLM-producing strain

M. echinospora led to undefined water-soluble intermediates
Chemistry & Biology 15, 8
that could be transformed to CLM by other blocked mutant

strains (Rothstein and Love, 1991). Characterization of the

CLM biosynthetic gene cluster (Ahlert et al., 2002) revealed

four putative GT-encoding genes (calG1, calG2, calG3, and

calG4) that enabled the initial biochemical characterization of

the CLM GTs CalG1 and CalG4 (Zhang et al., 2006b), providing

support for the pathway highlighted in Figure 6. Specifically,

this prior work revealed CalG1 and CalG4 as the 3-O-rhamonsyl-

transferase and aminopentosyltransferase, respectively, the

order of which appeared indiscriminate. The current study ex-

tends this work by confirming CalG3 and CalG2 as the internal

sequential 4,6-dideoxy-4-hydroxylamino-a-D-glucosyltransfer-

ase and 4-deoxy-thio-a-D-digitoxosyltransferase, respectively.

Thus, this study completes the functional assignment of the

four CLM GTs and provides further support for a sequential gly-

cosylation pathway in CLM biosynthesis.

CalG3 Reaction Reversibility and Sugar Exchange
The reversibility of GT-catalyzed reactions has enabled GT

biochemical characterization, the syntheses of exotic sugar nu-

cleotides, and the differential glycosylation of various complex

natural products (Zhang et al., 2006a, 2006b, 2007). As de-

scribed in the present study, a similar strategy facilitated the

functional assignment of CalG3 as the requisite CLM 4,6-di-

deoxy-4-hydroxylamino-a-D-glucosyltransferase and allowed

for the generation of a small set of novel CLM analogs via

CalG3-catalyzed sugar exchange. Though this study revealed

CalG3 to be among the growing list of inherently promiscuous

GTs (Salas and Mendez, 2007; Thibodeaux et al., 2007), a re-

markable distinction of the CalG3 reaction from previously stud-

ied examples (Minami et al., 2005; Zhang et al., 2006a, 2006b,

2007) is the apparent reversibility with nonnative NDPs. Specifi-

cally, biochemical characterization of the CLM sugar nucleotide

pathways reveals all four aryltetrasaccharide sugars to derive
42–853, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 847
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Figure 5. Differential Reactions with 9 and 12 in the Presence of CalG2 and CalG3

(i) 50 mM 9, 300 mM 12 in the presence of 7.5 mM CalG2 at 30�C overnight; (ii) 50 mM 9, 300 mM 12 in the absence of enzymes at 30�C overnight; (iii) 50 mM 9, 300 mM

12 in the presence of 7.5 mM CalG3 at 30�C overnight.
from TDP/UDP-sugar precursors (Bililign et al., 2002; Johnson

and Thorson, unpublished data), whereas the present study re-

veals purine-based nucleotides to be optimal substrates in the

reverse direction. Although this highlights the use of caution

when employing reversibility as a means to determine GT sub-

strate specificity, the nucleotide specificity of CalG3 sugar ex-

change reactions with the NDP-Glc series is consistent with a

TDP/UDP sugar-dependent process. Simulation of GT catalysis

has revealed the equilibrium constant (Keq) to be the single most

critical factor governing reaction efficiency (Melancon et al.,

2006). The observed modulation of the CalG3 equilibrium via

nucleotides (Figure 3 and, specifically, Figure 3B) and/or pH

(Figure S4) is also consistent with a thermodynamically con-

trolled process.

CalG3 Structure
Though the sequence homology of GalG3 and its closest struc-

tural homologs is low (<25% identity), the modular design and

the structural similarity between GT-B glycosyltransferases im-

plicate the C-terminal domain as involved in sugar nucleotide

binding. Specifically, the tetraglycine loop 285–288 (Figure 4B,

inset), which adopted different conformations within the distinct

CalG3 crystal forms, most likely interacts with the sugar nucleo-

tide pyrophosphate while an adjacent large cavity within the

C-terminal domain of CalG3 is anticipated to accommodate

the corresponding nucleoside. The N-terminal domain also con-

tains a large cavity, which in our high-resolution model binds an

extended chemical entity (likely an ordered fragment of polyeth-

ylene glycol used during crystallization; Figure 4B, brown).

Based on structural homology of CalG3 to other natural product

GTs, this cavity likely binds calicheamicinone.

Using this information as a guide, the products of the reaction,

CLM T0 and TDP, were manually docked into the CalG3 model
848 Chemistry & Biology 15, 842–853, August 25, 2008 ª2008 Elsev
(Figure 4C). Specifically, the dinucleotide positioning was initially

guided by the high structural conservation of C-terminal domains

of CalG3 and oleandomycin glycosytransferase OleI in complex

with UDP (PDB ID 2iya; Bolam et al., 2007). Subsequent CLM T0

orientation in the corresponding N-terminal cavity was defined

by the surface of the cavity and the geometric constraints of a pu-

tative SN2 reaction between the acceptor hydroxyl group and the

sugar nucleotide anomeric carbon. Based on this model, the ac-

ceptor hydroxyl group is located near a putative catalytic diad

(His11 and Glu115). The first residue of the diad, His11, is highly

conserved as His or Asp among GT homologs (based on a multi-

ple sequence alignment of 1070 sequences from NR85S data-

base by FFA03) (Jaroszewski et al., 2005) and a structure-based

multiple sequence alignment (Figure S6). Consistent with this,

mutation of the His11 equivalent in the oleadromycin GT OleI

(His25 to Ala) led to complete loss of catalytic activity (Bolam

et al., 2007). Moreover, the CalG3 His11-containing loop (N1

loop, residues 5–12; Figure 4B, inset, black arrow) has to un-

dergo conformational changes during the substrate binding

and catalysis. In the CalG3 model, this dynamic loop resides be-

tween the calicheamicinone-binding cavity and an internal cavity

filled with a cluster of well-ordered water molecules, the removal

of which allows for an expansion of the calicheamicinone-bind-

ing cavity to accommodate the requisite hexose.

The second member of the CalG3 putative catalytic diad

(Glu115), though less conserved in general, is most often found

to be Asp or Glu in GT sequence homologs (Figure S6). The

CalG3-substrate complex model also predicts the access to

the calicheamicinone hydroxyl nucleophile to be sterically hin-

dered, and thus, activation of this hydroxyl may require a wa-

ter-mediated process. Similar water-containing catalytic triads

have been described in variety of enzymes, including phospho-

lipases (Scott et al., 1990). In some flavonoid GTs, a neighboring
ier Ltd All rights reserved
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Figure 6. Proposed CLM Glycosylation Pathway
serine within the same loop has been implicated (along with the

His/Asp-Asp/Glu diad) as part of a catalytic triad (Offen et al.,

2006). CalG3 also contains a Ser within the N1 loop but in a differ-

ent position, the function of which remains to be elucidated. In

addition, consistent with other GTs, the CalG3-substrate model

is consistent with the conserved Gln311-sugar, His284-pyro-

phosphate, and Trp268-base stacking components of the sugar

nucleotide (Figure S6). In comparison with other UDP/TDP sugar

nucleotide-utilizing GTs, CalG3 Leu271 is topologically equiva-

lent to the TDP sugar-utilizing GT GtfA Leu280, an amino acid

noted as a potential selectivity filter for 20-deoxy nucleotides. In

contrast, the TDP sugar-utilizing GT OleI has a Gln315 at the

same position that hydrogen bonds the nucleotide

20-OH. Finally, this model also implicates the cavity formed by

the residues Leu14, Pro15, Gln137, and Arg135 may accommo-

date the CLM trisulfide-SSSMe trigger.

SIGNIFICANCE

In conjunction with our previous report (Zhang et al., 2006b),

this study completes the functional assignment of all four

CLM GTs, extends the concept of reversibility of enediyne

GT-catalyzed reactions, and highlights a unique crystal

structure of an enediyne GT. From a structural biology per-

spective, this work reveals the common GT-B structural

fold can now be extended to include enediyne GTs. Given
Chemistry & Biology 15, 8
the notable architectural distinctions of enediynes from

other natural products for which GT structures have been

elucidated (including glycopeptides, aromatic polyketides,

and macrolides), this work adds to the structural blueprints

for engineering and/or evolving novel glycosylation cata-

lysts (Williams et al., 2007, 2008; Williams and Thorson,

2008). From a biosynthetic perspective, this work also com-

pletes the functional annotation of the four calicheamicin

GTs, highlights the first characterization of a hydroxylamino

glycosidic bond-forming GT, and presents conclusive evi-

dence of a sequential glycosylation pathway in CLM biosyn-

thesis. Furthermore, this work highlights the utility of the re-

versibility of GT-catalyzed reactions and sugar nucleotide

surrogate substrates for both the elucidation of enzyme

function and the diversification of therapeutically important

natural products.

EXPERIMENTAL PROCEDURES

Materials

E. coli DH5a and BL21(DE3) competent cells were purchased from Invitrogen

(Carlsbad, CA). The pET-16b E. coli expression vector was purchased from

Novagen (Madison, WI). Primers were purchased from Intergrated DNA Tech-

nology (Coralville, IA). Pfu DNA polymerase was purchased from Stratagene

(La Jolla, CA). Restriction enzymes and T4 DNA ligase were purchased from

New England Biolabs (Ipswich, MA). All other chemicals were reagent grade

or better and purchased from Sigma (St. Louis, MO). Calicheamicin a3
I
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(Figure 2, 7) was provided by Wyeth Research (Pearl River, NY). Analytical

HPLC was run on a Varian Prostar 210/216 system connected to a Prostar

330 photodiode array detector (Varian; Walnut Creek, CA). Mass spectra

(MS) were obtained by using electrospray ionization on an Agilent 1100

HPLC-MSD SL quadrupole mass spectrometer (Agilent Technologies; Palo

Alto, CA) connected with a UV/Vis diode array detector.

Chemoenzymatic Synthesis of TDP Sugars

The set of TDP sugars employed were generated chemoenzymatically as pre-

viously described (Barton et al., 2002; Jiang et al., 2000, 2001). Specifically, the

RmlA (Ep, glucose-1-phosphate thymidylyltransferase) reaction was carried

out in Tris-HCl buffer (50 mM [pH 8.0]) containing 5 mM MgCl2, 1 U inorganic

pyrophosphatase, 10 mM of purified Ep, 8 mM sugar-1-phosphate and 6 mM

TTP, and incubated at 37�C for 2 hr. The formation of sugar nucleotides (Fig-

ure 2, 5–24) was analyzed by HPLC using a reverse-phase column Luna C18,

5 mm, 250 3 4.6 mm with UV detection at 254 nm. A phosphate buffer A (30 mM

potassium phosphate [pH 6.0], 5 mM tetrabutylammonium hydrogensulfate,

2% acetonitrile) was used as mobile phase, and the HPLC was run with

a 0%–50% gradient of buffer B (acetonitrile) over 30 min.

Preparation of CLM T0 (9) from Calicheamicin a3
I (7)

CLM a3
I (7, 20 mg, 0.017 mM) was dissolved in wet acetone (20 ml) followed by

the addition of pyridine p-toluenesulfonate (0.4 mg, 0.002 mM). The reaction

was heated to reflux (65�C) and monitored by TLC (9:1 CHCl3:MeOH) and re-

verse-phase HPLC (Phenomenex [Torrance, CA] Luna C18, 4.6 3 250 mm col-

umn; Figure 2). After 19 hr, full conversion of 7 to a product with a UV spectrum

characteristic to the CLM core structure had occurred. Purification was per-

formed by silica gel column chromatography (9:1 CHCl3:MeOH) to yield the

isopropylidenylated analog 8 as a light brown oil (10 mg, 97%, TLC

Rf = 0.35, 9:1 CHCl3:MeOH), which was characterized by 1H NMR on a Varian
UNITYInova 400 MHz instrument (Figure S3) and by APCI-MS using an Agilent

1100 Series LC/MSD. Compound 8 (10 mg, 0.016 mM) was hydrolyzed by dis-

solving in 1 ml of a 1:1 MeOH:H2O solution in the presence of TFA (12 ml) and

agitating for 4 hr using TLC and reverse-phase HPLC to observe the reaction

(Figure 2). The solvent was removed in vacuo and the crude oil purified by pre-

paratory reverse-phase HPLC (Supelco Discovery BIO [St. Louis, MO], 10 3

250 mm, 5 mm column) using a gradient of 10%–100% acetonitrile in water

over 20 min at a rate of 10 ml/min with UV detection at 280 nm. Lyophilization

yielded 9 as a white powder (5.8 mg, 62%, TLC Rf = 0.32, 9:1 CHCl3:MeOH).

Characterization was performed on a Varian UNITYInova 500 MHz NMR with

a capillary probe (Figure S2) and by high-resolution MS using a Waters LCT

time-of-flight mass spectrometer. Compound 8: 1H NMR (d6-acetone,

400 MHz) d 7.86 (s, 1 H), 6.46 (dd, J = 10.3, 5.0 Hz, 1 H), 6.15 (d, J = 1.5 Hz,

1 H), 6.04 (d, J = 9.4 Hz, 1 H), 5.98 (dd, J = 9.4, 1.5 Hz, 1 H), 4.75 (d, J = 7.9

Hz, 1 H), 4.23 (t, J = 9.1 Hz, 1 H), 4.19–4.13 (m, 2 H), 4.03 (t, J = 9.2 Hz, 1 H),

3.94 (dd, J = 14.9, 5.0 Hz, 1 H), 3.65 (s, 3 H), 3.48 (t, J = 8.4 Hz, 1 H), 3.05

(d, J = 17.2 Hz, 1 H), 2.73 (d, J = 17.2 Hz, 1 H), 2.54 (s, 3 H), 2.28 (s, 3 H),

2.13 (s, 3 H), 1.18 (d, J = 6.2 Hz, 3 H); MS (APCI) m/z C27H33N2O9S3 ([M +

H]+) 625.1, calculated 625.1. Compound 9: 1H NMR (d6-acetone, 500 MHz)

d 6.46 (dd, J = 10.3, 4.9 Hz, 1 H), 6.14 (s, 1 H), 6.03 (d, J = 9.3 Hz, 1 H), 5.97

(d, J = 9.3 Hz, 1 H), 4.72 (d, J = 7.7 Hz, 1 H), 4.23 (t, J = 9.2 Hz, 1 H), 4.18–

4.11 (m, 2 H), 4.00 (t, J = 9.3 Hz, 1 H), 3.93 (dd, J = 14.9, 4.9 Hz, 1 H), 3.65

(s, 3 H), 3.49 (dd, J = 9.2, 7.7 Hz, 1 H), 3.05 (d, J = 17.0 Hz, 1 H), 2.73 (d, J =

17.0 Hz, 1 H), 2.53 (s, 3 H), 1.17 (d, J = 6.0 Hz, 3 H); HRMS (ESI) m/z

C24H28N2NaO9S3 ([M + Na]+) 607.0866, calculated 607.0855.

Cloning, Expression, and Purification of GTs

The calG2 and calG3 genes from the calicheamicin producer Micromonospora

echinospora LL6600 were amplified from genomic DNA by using primer

pairs: 50-cacggacggagtcgcatatggcccacctc-30 (forward, NdeI) and 50-

gccggtggatccgcggggcg-30 (reverse, BamHI) for calG2; 50-gaagggctccca

tatgcgcgtgctgttc-30 (forward, NdeI) and 50-gggcgacgagatctgctcaacccga

gatg-30 (reverse, BglII) for calG3, using Pfu DNA polymerase. PCR products

were digested with NdeI/BamHI (calG2) or NdeI/BglII (calG3) and ligated into

the pET16b expression vector (NdeI/BamHI, to generate the N-terminal

MGHHHHHHHHHH fusion) to give plasmids pCAM3.2 (CalG2) and

pCAM11.2 (CalG3), respectively.
850 Chemistry & Biology 15, 842–853, August 25, 2008 ª2008 Elsev
For CalG3 expression, a single transformant of E. coli BL21(DE3)/pCAM11.2

was inoculated into 4 ml LB medium supplemented with 100 mg/ml of ampicillin

and grown at 37�C overnight. The starter cultures were inoculated into 1 liter of

LB medium with 100 mg/ml of ampicillin and initially grown at 28�C to an OD600

value of 0.5–0.7. Expression was induced with the addition of 0.4 mM of iso-

propyl-b-D-thiogalactopyranoside (IPTG) followed by continued growth with

shaking for 16 hr. The cells obtained from 1 liter of culture were washed twice

with buffer A (20 mM NaH2PO4 [pH 7.5], 500 mM NaCl, 10 mM imidazole) and

resuspended in 30 ml of buffer A supplemented with 1 mg/ml of lysozyme. Af-

ter 10 min incubation on ice, the cells were lysed by three rounds of French

press (1200 psi, Thermo IEC, Milford, MA) and the insoluble material was re-

moved by centrifugation at 30,000 g for 1 hr (4�C). The supernatant was loaded

onto the HisTrap HT column (1 ml, GE Healthcare, Piscataway, NJ) and the

N-(His)10-tagged CalG3 was eluted with a linear gradient of imidazole (10–

500 mM) in buffer A using a FPLC-AKTA system (GE Healthcare). The purified

protein was desalted through PD-10 column (GE Healthcare) and stored in the

buffer containing 10 mM Tris-HCl (pH 8.0), 100 mM NaCl, and 10% glycerol

until use. Protein concentration was determined by Bradford assay. N-(His)10-

tagged CalG2 was expressed and purified following the same protocol from

E. coli overexpression strain BL21(DE3)/pCAM3.2.

CalG3 Assays

Generally, CalG3 assays were performed in a total volume of 100 ml containing

50 mM of CLM T0 (9) and 2 mM NDP (Figure 3B) or 300 mM of TDP sugars

(Figure S4) with incubation at 30�C for 2 hr (reverse reaction) or overnight

(sugar exchange) in the presence of 7.5 mM of CalG3, in Tris-HCl buffer

(10 mM [pH 7.6]) containing 1 mM of MgCl2. The assay mixtures lacking

CalG3 served as controls. The reactions were subsequently quenched by

the addition of 100 ml methanol and centrifuged to remove proteins. The reac-

tions were monitored by HPLC (Phenomenex Luna C18, 5 mm, 250 3 4.6 mm;

10%–100% CH3CN over 20 min, 1 ml/min, 280 nm). The conversion rate

was calculated by dividing the integrated area of glycosylated product with

the sum of integrated area of product and the remaining substrate. All newly

formed products were also analyzed by LC-MS (ESI) with both positive (+)

and negative (�) modes.

To assess the pH range for CalG3 catalysis, potassium phosphate buffers

(50 mM [pH 6.0, pH 7.0, pH 7.6, and pH 8.0]) were used (9 was instable >

pH 8.0). The reaction mixtures contained 50 mM 9, 2 mM NDP (or 2 mM NDP

glucose), and 7.5 mM CalG3 and were incubated at 30�C for 2 hr (reverse

reaction) or overnight (sugar exchange).

CalG2 Assays

Generally, CalG2 assays were performed in a total volume of 100 ml containing

50 mM of CLM T0 (9) and 2 mM of NDP glucoses (Figure 3B) or 300 mM of TDP

sugars (Figure S4) with incubation at 30�C overnight in the presence of 7.5 mM

CalG2, in Tris-HCl buffer (10 mM [pH 7.6]) containing 1 mM of MgCl2. The as-

say mixtures without addition of CalG2 served as controls. The reactions were

quenched by the addition of 100 ml methanol and centrifuged to remove pro-

teins. The formation of new CLM products was monitored by HPLC analysis

as described above for CalG3 assays.

CalG3 Crystallization

Crystals of selenomethionine-labeled (SeMet) CalG3 were grown at 277 K by

the hanging drop method from a 10 mg/ml protein solution in a protein buffer

(50 mM NaCl, 10 mM TRIS [pH 7.5]) mixed with an equal amount of the well

solution (16% w/v polyethylene glycol 4000, 200 mM triammonium citrate,

100 mM MOPS [pH 7.0]). Rod-shaped crystals with dimensions up to 400 3

20 3 20 mm grew fused in parallel clusters, only occasionally as usable single

needles. Crystals were cryoprotected at 277 K by soaking in the well solution

containing 0%, 10%, and 20% (v/v) ethylene glycol and were flash frozen in

a stream of cryogenic nitrogen gas at 100 K. The native crystals of CalG3

that lead to a high-resolution data set were obtained by sitting drop method

from a 10 mg/ml protein solution in the protein buffer mixed with an equal

amount of the well solution (25% w/v polyethylene glycol 1500; condition D1

of Hampton IndexHT screen). Crystals were discovered 8 months after the ini-

tial setup and were never again successfully reproduced. Crystals were cryo-

protected at 277 K in Fomblin MW2500 (Aldrich) and were flash frozen in

a stream of cryogenic nitrogen gas at 100 K. The diffraction quality of crystals
ier Ltd All rights reserved
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was evaluated using a laboratory X-ray diffraction instrument equipped with

a Bruker AXS Proteum R CCD detector and a Microstar rotating anode gener-

ator using copper Ka radiation (Bruker; Madison, WI). All attempts to prepare

crystals of complexes of CalG3 with its substrates, via cocrystallization with

ligands or soaking crystals with ligands, were unsuccessful.

CalG3 Structure Determination

X-ray diffraction data for both SeMet-labeled and native CalG3 were collected

at the General Medicine and Cancer Institute Collaborative Access Team (GM/

CA-CAT) 23-ID-D beamline at the Advanced Photon Source at Argonne Na-

tional Laboratory. Each of the 290 diffraction images for the native crystal

was collected at the crystal-to-detector distance of 220 mm and exposed

for 2 s with 100-fold attenuation of the incident beam. The data was collected

in a single pass with 1.25� oscillation per frame. Each of the 180 diffraction im-

ages for the selenomethionine-labeled crystal was collected at wavelength of

0.97918 Å at the crystal-to-detector distance of 300 mm and exposed for 6 s

with 100-fold attenuation of the incident beam. The data was collected in a sin-

gle pass with 1� oscillation per frame. The diffraction images were integrated

and scaled using HKL2000 (Otwinowski and Minor, 1997). The native crystals

belong to the space group P21 with unit cell parameters a = 57.4 Å, b = 97.7 Å,

c = 63.0 Å, b = 90.6�. The selenomethionine-labeled crystals belong to the

space group I222 with unit cell parameters a = 106.7 Å, b = 119.3 Å, c =

155.9 Å.

The selenomethionine substructure of the SeMet-labeled crystals of CalG3

was determined using HySS (Adams et al., 2002; Uson and Sheldrick, 1999).

These programs identified 13 consensus anomalous sites. The structure

was automatically phased using autoSHARP (de La Fortelle and Bricogne,

1997) with the help of auxiliary programs from the CCP4 (Collaborative Com-

putational Project Number 4, 1994) suite. The initial phase information was sig-

nificantly improved by twofold averaging during the density modification as im-

plemented in CNS (Brunger et al., 1998). Resulting map at 2.8 Å resolution was

high quality and allowed for partial building of the model in ARP/wARP (Perra-

kis et al., 1999). This model was improved by manual building in COOT (Emsley

and Cowtan, 2004) and used as a search model in molecular replacement trials

in MOLREP (Vagin and Teplyakov, 1997) against the 1.9 Å native diffraction

data. The high-resolution model of CalG3 was next built in ARP/wARP using

the phase information derived from the successfully placed low-resolution

model. The automatically built model contained 614 residues, of which 591

had side chains assigned and R = 25.3% (Rfree = 31.0%). The structure was

completed in multiple cycles of manual building in COOT and refinement in RE-

FMAC5 (Murshudov et al., 1997). Final refinement protocol included TLS re-

finement with five TLS groups per monomer based on the TLSMD server

(Painter and Merritt, 2006) analysis. The final refined model has R = 16.0%

(Rfree = 21.2%). In addition to residues �2 to 375 of monomer A and residues

�6 to 374 of monomer B, the final model contains 579 waters and a molecule

of polyethylene glycol. Finally, we used the final high-resolution model of

CalG3 (in P21) as a starting point for refinement of the lower-resolution model

of the SeMet-labeled CalG3 (in I222).

ACCESSION NUMBERS
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